Abstract : This study explores AI-powered robotic systems for e-waste recycling. The proposed system combines advanced AI algorithms with robotic hardware to identify, disassemble, and sort electronic components autonomously. Experiments show a 35% increase in disassembly speed and 28% improvement in component identification accuracy compared to manual methods. The system demonstrates adaptability to various device types and safe handling of hazardous materials. Economic analysis suggests a 40% potential cost reduction at scale. These findings indicate that AI-robotic systems could significantly address the global e-waste crisis, improving resource recovery and environmental sustainability.
Cite : Maheshwari, A., & Gupta, S. (2024). Ai-Powered Robotic Systems For Disassembly And Recycling Of Complex Electronic Devices (1st ed., pp. 205-214). Noble Science Press. https://doi.org/10.52458/9788197112492.nsp.2024.eb.ch-21
References :
Alvarez-de-los-Mozos, E., & Renteria, A. (2017). Collaborative robots in e-waste management. Procedia Manufacturing, 11, 55-62.
Baldé, C.P., Forti V., Gray, V., Kuehr, R., Stegmann,P. (2017). The Global E-waste Monitor – 2017, United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna.
Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: a critical review. Journal of cleaner production, 51, 1-22.
Cucchiella, F., D'Adamo, I., Lenny Koh, S. C., & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, 263-272.
Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of hazardous materials, 158(2-3), 228-256.
Dekker, R., Bloemhof, J., & Mallidis, I. (2020). Operations Research for green logistics–An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671-679.
Forti V., Baldé C.P., Kuehr R., Bel G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam.
Jahani, A., Vahidinasab, V., Sepasian, M. S., & Oraee, H. (2019). An application of ICT to solve the e-waste recycling issues: Introducing an automatic waste-item classification method. Sustainable Cities and Society, 45, 491-501.
Joshi, A. D., & Patel, D. B. (2020). E-waste management using artificial intelligence and Internet of Things. In Research Anthology on Cross-Industry Challenges of Industry 4.0 (pp. 1230-1250). IGI Global.
Kim, S., Laschi, C., & Trimmer, B. (2021). Soft robotics: a bioinspired evolution in robotics. Trends in biotechnology, 31(5), 287-294.
Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste management, 31(4), 714-730.
Parajuly, K., Kuehr, R., Awasthi, A. K., Fitzpatrick, C., Lepawsky, J., Smith, E., ... & Zeng, X. (2019). Future e-waste scenarios. StEP (Bonn), UNU ViE-SCYCLE (Bonn) & UNEP IETC (Osaka).
Perkins, D. N., Drisse, M. N. B., Nxele, T., & Sly, P. D. (2014). E-waste: a global hazard. Annals of global health, 80(4), 286-295.
Raihanian Mashhadi, A., & Behdad, S. (2017). Optimal sorting policies in remanufacturing systems: Application of product life-cycle data in quality grading and end-of-use recovery. Journal of Manufacturing Systems, 43, 15-24.
Rujanavech, C., Lessard, J., Chandler, S., Shannon, S., Dahmus, J., & Guzzo, R. (2016). Liam-An Innovation Story. Apple Inc.
Song, Q., & Li, J. (2014). Environmental effects of heavy metals derived from the e-waste recycling activities in China: A systematic review. Waste Management, 34(12), 2587-2594.
Ueberschaar, M., Otto, S. J., & Rotter, V. S. (2017). Challenges for critical raw material recovery from WEEE–The case study of gallium. Waste Management, 60, 534-545.
Vongbunyong, S., Kara, S., & Pagnucco, M. (2017). General plans for removing main components in cognitive robotic disassembly automation. In Advances in Reconfigurable Mechanisms and Robots II (pp. 729-741). Springer.
Wath, S. B., Dutt, P. S., & Chakrabarti, T. (2011). E-waste scenario in India, its management and implications. Environmental monitoring and assessment, 172(1), 249-262.
Wegener, K., Chen, W. H., Dietrich, F., Dröder, K., & Kara, S. (2015). Robot assisted disassembly for the recycling of electric vehicle batteries. Procedia Cirp, 29, 716-721.
Xue, M., Xu, Z. (2017). Application of artificial intelligence in electronic waste management: A review. Waste Management & Research, 35(6), 581-594.