EXPERIMENT: 03

Aim:

TO PREPARE AND STANDARDIZE SOLUTION OF 0.1M SULPHURIC ACID

¹Dr. ANUPAMA DIWAN

¹Professor and Dean, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

²Mr. MANOJ KUMAR SHARMA

²Assistant Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

Ch.Id:-ASU/NSP/EB/ APHFTA /2022/Ch-03

ISBN-978-93-91842-51-2

DOI: https://doi.org/10.52458/9789391842512.nsp2022.eb.asu.ch-03

REQUIREMENTS

A. Glassware & Instruments

- 1. Clean and calibrated burette
- 2. Pipette
- 3. Conical flask
- 4. Burette stand
- 5. Measuring cylinder

B. Chemicals & Reagents

- 1. Analyte: 0.1 N H₂SO₄
- 2. Titrant: Sodium carbonate
- 3. Indicator: Methyl red

THEORY

This experiment is typically an acid-base titration in which a conical flask containing sulfuric acid is titrated with Na_2CO_3 . In the presence of indicator (Methyl red), passing Na_2CO_3 via H_2SO_4 will transform the solution from yellow to pink. Standard laboratory conditions are used to titrate a standard solution of Na_2CO_3 with H_2SO_4 in this experiment.

PRINCIPLE

The principle of this experiment is that it is acid-base titration. Sulphuric acid and sodium carbonate in presence of methyl red indicator turns the solution red to yellow with release of sodium sulfate and carbon dioxide.

PROCEDURE

H₂SO₄ Preparation

- With constant stirring, slowly add 6 ml of H₂SO₄ to approximately 800 ml of DW.
- Fill up to 1 Ltr with DW.
- Let it cool at 25 degrees Celsius.

Standardization of H₂SO₄ solution

- Accurately weigh approximately 0.2g of anhydrous Na₂CO₃ that has been heated for one hour at approximately 270 °C.
- Mix it with 100 ml of water and 0.1 ml of methyl red solution.
- Slowly add the acid from a burette while stirring continuously until the solution turns a light pink colour.
- Bring the solution to a boil and continue titrating as needed until the light pink colour doesn't change any more as the solution boils.

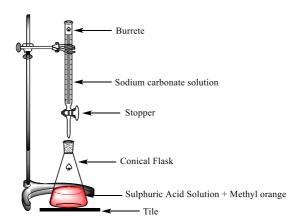
REACTION

 $H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + CO_2 + H_2O$

CALCULATION

S. No	Start point	End point	Vol. consumed

Observation table


M1V1=M2V2

M1 = M2V2/V1 = ?

N1V1=N2V2

N1 = N2V2/V1 = ?

DIAGRAM

APPLICATIONS

Uses of H₂SO₄

- 1. It is used to manufacture fertilisers.
- 2. In skin ointments, it is used to treat skin disorders such as cancer sores.
- 3. It is used to destroy the DNA of malignant cells during the production of chemotherapeutic medicines.
- 4. It is used in the paper industry to produce aluminium sulphate.

RESULT

From the above experiment we can say that Sulphuric acid can be effectively standardized by Sodium Carbonate (Na_2CO_3).

VIVA QUESTIONS

- 1. How you will prepare 0.1 N NaOH?
- 2. How you will prepare 0.1 N H₂SO₄?
- 3. What is the normality of 5% NaOH in water?
- 4. What is the %age concentration of 3N NaOH in water?
- 5. What is the molecular weight of H₂SO₄?
- 6. What is the %age purity of H2SO4 available in the laboratory?
- 7. What is the density of H2SO4 available in the laboratory?
- 8. Define the term standardization.
- 9. Define the term neutralization curve.
- 10. Current experiment comes under which type of titration?