EXPERIMENT: 20

AIM:

TO PERFORM ASSAY OF ISONIAZID (REDOX TITRATION) BY BROMATOMETRY AND STANDARDIZATION OF TITRANT

¹Dr. NARENDER YADAV

¹Assistant Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

²Dr. ANUPAMA DIWAN

²Professor and Dean, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

Ch.Id:-ASU/NSP/EB/ APHFTA /2022/Ch-20

ISBN-978-93-91842-51-2

DOI: https://doi.org/10.52458/9789391842512.nsp2022.eb.asu.ch-20

REQUIREMENTS

A. Glassware & Instruments

- 1. Pipette
- 2. Burette
- 3. Filter funnel
- 4. Conical flask
- 5. Graduated cylinders
- 6. Retort stand
- 7. Clamp

B. Chemicals & Reagents

- 1. Potassium Bromate
- 2. Isoniazid
- 3. Methyl orange or Methyl red
- 4. HCl
- 5. Water

PRINCIPLE

Analysing Ionized IP Anti-tubercular drug: In the presence of HCl solution, this is determined by adding potassium bromide and titrating potassium bromate directly. As the titration continues, bromine is released and reacts with isoniazid as depicted below. An Azo-dye, methyl red solution, is used as an indicator and decolorizes by oxidation at the end point.

Potassium Bromate is a potent oxidising agent that is reduced easily to bromide in the presence of HCl, which is then oxidised by bromate to produce free bromine.

$$BrO_{3}^{-} + 6H + 6e^{-} \Leftrightarrow Br^{-} + 3H_{2}O$$

$$BrO_3$$
 + $5Br$ + $6H$ + $\Leftrightarrow 3Br_2$ + $3H_2O$

Therefore, the equivalent is 1/6 moles, KBrO 3/6, or 167/6, which is equivalent to 27.88. At the endpoint of titration, bromine is no longer present.

$$BrO_{3^{-}} + 5Br^{-} + 6H^{+} \rightarrow 3Br_{2} + 3H_{2}O$$

Therefore,

$$KBrO_3 + 5Br - +6HC1 \rightarrow 3Br_2 + 6KC1 + 3H_2O$$

THEORY

Bromate of Potassium (KBrO₃) is used as titrant. It is utilised as a primary standard and is a potent oxidizer.

Typically, potassium bromate is available in a highly pure form. The assay value of the analytical reagent is 99.9 percent. Since the substance can be dried at 120-150 degree C, is anhydrous, and is preserved indefinitely in aqueous solution, it can be used as a primary standard. The only disadvantage is that one-sixth of the relative molecular mass is a relatively small amount.

The reaction occurs in an acidic medium (typically 1M HCl is used).

$$KBrO_3 \Leftrightarrow K^+ + BrO_3^-$$

Direct titration takes place

$$3(C_6H_7N_3O) + BrO_3^- \Leftrightarrow 3(C_6H_7N_3O_2) + Br$$

$$5Br + BrO_3 + 6H \Leftrightarrow 3Br_2 + 3H_2O$$

Br₂ + indicator (Methyl Orange/Methyl Red) → colourless

PROCEDURE

Preparation of 0.1N KBrO₃ solution

- Molecular weight of **KBrO**₃= 167g/mol
- $N = \frac{weight*1000}{molecular\ weight*volume\ taken}$

• Weight=
$$\frac{0.1N*\frac{167g}{mol}*250ml}{1000}$$

- Weight= 4.175g
- KBrO3 is a standard substance and can be easily obtained in pure state by recrystallization from water.
- KBrO3 is dried at 120-150 °C for 1-2 hr and then cooled in a desiccator.
- Dissolve 4.175 of KBrO₃ in sufficient quantity of water to produce 250ml.

Preparation of 0.1N Isoniazid solution

- Molecular weight of **Isoniazid**= 137g/mol
- $N = \frac{weight*1000}{molecular\ weight*volume\ taken}$

• Weight=
$$\frac{0.1N*\frac{137g}{mol}*250ml}{1000}$$

- Weight= 3.425g
- Dissolve 3.425g of Isoniazid in sufficient quantity of water to produce 250ml.

Assay of Isoniazid

- 1. Take the analyte solution (i.e. C₆H₇N₃O) in a conical flask at low temperature.
- 2. Add 1M HCl to the conical flask and make the solution acidic.
- 3. Add 2/3 drops of indicator i.e. methyl orange or methyl red so solution becomes red in acidic medium.
- 4. Titrate the above solution using standard KBrO₃ solution.
- 5. At the end point the solution becomes colourless from red colour.

REACTION

$$KBrO_3 + 5Br + 6HCl \rightarrow 3Br_2 + 6KCl + 3H_2O$$

CALCULATION

Observation table

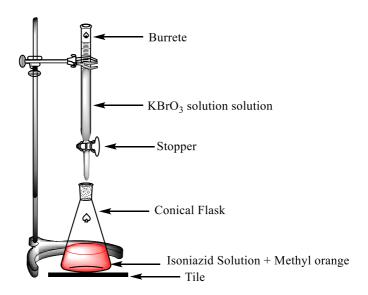
S No.	Volume of Isoniazid solution (ml)	Burette reading (ml)		Volume of Potassium bromate used (ml)
		Initial	Final	bromate used (iii)
1.				
2.				
3.				

Calculation and factor calculation

Factor calculation of Isoniazid

Molecular weight of Isoniazid= 137 g/mol

1N 1000ml Isoniazid= 137g


0.1 N 1ml Isoniazid= 137/10000= 0.0137g

Percentage purity calculation of Isoniazid

% Isoniziad (by weight) =

 $\frac{\textit{Observed normality (KBrO3)}*\textit{Volume of KBrO3 (burette reading)}*\textit{Factor}*100}{\textit{Theoritical normality (KBrO3)}*\textit{Weight (Isoniazid)}}$

DIAGRAM

APPLICATION

In conjunction with other medications, isoniazid is used to treat active tuberculosis (TB) infections. Additionally, it is used alone to prevent active tuberculosis infections in individuals who may be infected with the bacteria (people with positive TB skin test). Isoniazid is an antibiotic that works by inhibiting bacterial growth.

This antibiotic is only used to treat bacterial infections. It is ineffective against viral infections (such as common cold, flu). Utilizing an antibiotic when it is not necessary can render it ineffective against future infections.

RESULT

Percentage purity of Isoniazid solution is