EXPERIMENT: 02

AIM:

TO PREPARE AND STANDARDIZE 0.1N SOLUTION OF HYDROCHLORIC ACID

¹Dr. KAPIL KUMAR

¹Associate Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

²Dr. NARENDER YADAV

²Assistant Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

Ch.Id:-ASU/NSP/EB/ APHFTA /2022/Ch-02

ISBN-978-93-91842-51-2

DOI: https://doi.org/10.52458/9789391842512.nsp2022.eb.asu.ch-02

REQUIREMENTS

A. Glassware & Instruments

- 1. Clean and calibrated burette
- 2. Pipette
- 3. Conical flask
- 4. Burette stand
- 5. Measuring cylinder

B. Chemicals & Reagents

- 1. Analyte- Hydrochloric acid (0.1 M)
- 2. Titrant-Sodium carbonate (Na₂CO₃)
- 3. Indicator- Methyl Red solution

THEORY

HCl is available in solutions with a maximum concentration of 38 percent (concentrated grade). Chemically, you can get concentrations of up to a little over 40%, but the rate of evaporation is so high that you have to take extra steps to store and handle it, like keeping it at a low temperature and pressure. Due to its high evaporation rate, laboratory-grade HCl is insufficiently pure to serve as a main standard. In this experiment, a standard solution of Na2CO3 is used to calculate the exact concentration of a HCl solution.

PRINCIPLE

$$Na_2CO_3 + 2HC1 \rightarrow 2NaC1 + CO_2 + H_2O$$

This is a titration that involves acid and base. Standardization of HCl is accomplished by adding sodium

carbonate, and methyl red solution is employed as the indicating agent. A transition in hue may be seen, going from very light yellow to very light pink.

PROCEDURE

Preparation of HCl Solution

- Take 85ml of HCl and dilution it to 1000ml.
- Standardize the solution using the steps outlined below

Standardization of HCl Solution

- Weigh precisely anhydrous Na₂CO₃ (1.5g) that has been heated for one hour at 270 °C.
- Mix it with 100 ml of water and 0.1 ml of methyl red solution.
- Slowly add the acid from the burette while stirring constantly until the solution becomes faintly pink.
- Boil the solution, let it cool, and proceed with the titration.
- Titrate as necessary until the light pink colour is not changed by heating again to boiling.
- 1 ml of 1M HCl is equivalent to 0.052 g of Na₂CO₃.

REACTION

 $Na_2CO_3 + 2HC1 \rightarrow 2NaC1 + CO_2 + H_2O$

CALCULATION

Observation table

S. No.	Start Point	End Point	Column Consumed (ml)
1.			
2.			

|--|

So, Density = Mass/Volume

Volume = Mass/Density

Density of hydrochloric acid is 1.18

So, Volume = 36.5/1.18=30.9 mL

So, 30.9mL hydrochloric acid → 1000ml → 1M

The % purity of Hydrochloric acid is 35-38% w/w

i.e. 35g HCl is present in 100g conc. HCl solution.

S0, 36.5g HCl is present in (?)g of conc. HCl solution

 $= 36.5 \times 100/35$

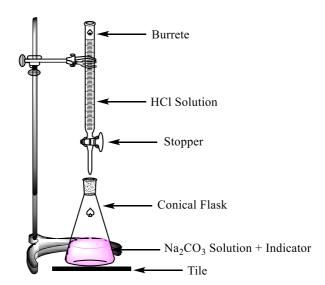
= 104.28g conc. HCl solution

Therefore, 104.28g of conc. HCl solution is required to prepare 1M solution.

For Normality

The value of normality industrial HCl = N1 = 11.79N

Normality we are going to prepare=N2 = 0.1N


Volume during 0.1N = V2=1000ml

Volume required to prepare 0.1N=V2=?

Therefore, N1 V1=N2 V2

So, ml of HCl is mixed 1000ml of solution to prepare 0.1N.

DIAGRAM

APPLICATION

Uses of HCl in daily life are:

- 1. In the Manufacturing of fireworks.
- 2. Manufacturing of batteries.
- 3. In some paints.
- 4. Used in making common salts.

RESULT

VIVA QUESTIONS

- 1. How you will prepare 0.1 N HCl?
- 2. How you will prepare 0.1 N Na₂CO₃?
- 3. What is the percentage purity of HCl available in the laboratory?
- 4. What is the density of the HCl available in the laboratory?
- 5. Define the term standardization.
- 6. What do you understand by the term indicator?
- 7. Define the term neutralization curve.
- 8. Current experiment comes under which type of titration?