EXPERIMENT: 18

AIM:

TO PERFORM ASSAY OF COPPER SULPHATE (REDOX TITRATION) BY IODOMETRY AND STANDARDIZATION OF TITRANT

¹Dr. KAPIL KUMAR

¹Associate Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

²Dr. ANUPAMA DIWAN

²Professor and Dean, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

Ch.Id:-ASU/NSP/EB/ APHFTA /2022/Ch-18

ISBN-978-93-91842-51-2

DOI: https://doi.org/10.52458/9789391842512.nsp2022.eb.asu.ch-18

REQUIREMENTS

A. Glassware & Instruments

- 1. Pipette
- 2. Pipette filler
- 3. Burette
- 4. Filter funnel
- 5. Conical flask
- 6. White tile
- 7. Graduated cylinders
- 8. Retort stand
- 9. Clamp

B. Chemicals & Reagents

- 1. Copper sulphate
- 2. Sulphuric acid
- 3. Potassium iodide
- 4. Acetic acid
- 5. Sodium thiosulphate
- 6. Starch solution
- 7. Sodium thiocynate

THEORY

Based on the oxidation-reduction reaction of iodine/thiosulphate, the test is conducted. A copper sulphate solution is initially treated with potassium iodide and acetic acid.

Cuprous iodide (CuI) is produced from iodine, and the free iodine is titrated using 0.1N sodium thiosulphate..

PRINCIPLE

It is a redox titration. Iodine is a oxidising agent and when it reacts with indicator to get end point it becomes colourless. The solution from faint blue is converted to colourless. The solution is oxidised to become colourless.

PROCEDURE

For standardization of Na₂SO₃ solution

- Pipette out 10ml of 0.1N KIO₃ solution into iodine flask and add 2g of KI and 5 ml of dil. H₂SO₄.
- Keep the flask in dark for 10 mins and titrate with Na₂S₂O₃ solution using starch indicator.
- Repeat the titration for concordant values.

For Assay

- Weigh accurately about 1gm CuSO₄ and dissolve in 50ml of H₂O, add 3gm of KI, 5ml of acetic acid and titrate the liberated I₂ with 0.1N Na₂SO₃, using starch solution as indicator.
- Continue titrating until just a faint blue tint remains, then add 2 g of potassium thiocyanate.
- Continue stirring and titrating until the blue colour vanishes.
- Repeat the titration for concordant values.

REACTION

$$2CuSO_4 + 4KI \longrightarrow 2CuI_2 + 2K_2SO_4$$

$$2CuI_2 \text{ (Unstable cupric iodide)} \longrightarrow Cu_2I_2 \text{ (Stable cuprous iodide)} + I_2$$

$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$$

CALCULATION

Observation table

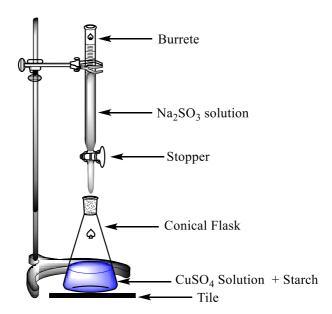
S. No	Vol of 0.1N KIO ₃ (ml)	Burette Reading (Initial)	Burette Reading (Final)	Vol of Na ₂ S ₂ O ₃ Rundown (ml)
1				
2				

The normality of Na₂S₂O₃ solution was calculated using formula:

N1V1=N2V2

where,

V1= vol. of KIO₃ solution= 10ml


N1=N of KIO₃ solution= 0.1N

V2= vol of Na₂S₂O₃ rundown= (As average of all reading)

 $N2 = N \text{ of } Na_2S_2O_3 = ?$

N2= N1V1/V2

DIAGRAM

APPLICATIONS

- 1. The several types of iodometry are incredibly beneficial for volumetric analysis.
- 2. The determination of copper (Oxidation number-2), chlorate, hydrogen peroxide, and dissolved oxygen are some examples.
- 3. Commonly, iodometry is used to assess the active quantity of hypochlorite in bleach that is responsible for bleaching.

RESULT

Normality of Na₂SO₃ is