EXPERIMENT: 15

AIM:

EXPLAIN QUANTITATIVE ESTIMATION OF SODIUM CHLORIDE

¹Dr. ANUPAMA DIWAN

¹Professor and Dean, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

²Dr. KAPIL KUMAR

²Associate Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

Ch.Id:-ASU/NSP/EB/ APHFTA /2022/Ch-15

ISBN-978-93-91842-51-2

DOI: https://doi.org/10.52458/9789391842512.nsp2022.eb.asu.ch-15

REQUIREMENTS

A. Glassware & Instruments

- 1. Burette
- 2. Conical flask
- 3. Measuring cylinder
- 4. filter paper circles
- Funnel.

B. Chemicals & Reagents

- 1. 5% Potassium chromate solution (indicator)
- 2. 0.1N Silver nitrate solution
- 3. Calcium carbonate powder
- 4. Sodium chloride.

THEORY

Several food products, such as pickles, chutneys, and sauces, include a significant amount of salt (NaCl). Vegetables and other low-acid canned foods are typically covered with a brine (dilute salt solution) layer. In items such as "pickles in brine," the minimal salt level is stipulated. A salinometer can be used to approximate the salt concentration in brine solutions (hygrometer). However, AgNO₃ titration is most commonly used to determine NaCl with more precision.

When a sample extract containing sodium chloride and potassium chromate solution is titrated with standard AgNO₃ solution, AgNO₃ precipitates chloride as AgCl. Upon completion of the precipitation reaction, the excess of silver nitrate interacts with potassium chromate to produce reddish-brown silver

chromate, the final product. The sample's NaCl concentration is determined by the quantity of AgNO₃ used for precipitation.

PROCEDURE

- 1. Weigh between 25 and 50 grammes of the homogenised sample, based on the salt content.
- 2. Dilute with distillate water and neutralise with 0.1N NaOH solution while using phenolphthalein as an indicator.
- 3. Transfer the mixture to a 250 ml volumetric flask, dilute to volume, shake, and filter.
- 4. Titrate an aliquot with a 0.1 N solution of silver nitrate, adding approximately 1 ml of a 5 percent aqueous potassium chromate solution as an indicator.
- 5. Determine the volume of silver nitrate solution required to create the desired reddish-brown colour.
- 6. Perform a blank titration with the same volume of distilled water as the sample aliquot.

REACTION

 $NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$

CALCULATIONS

Weight of the sample =w = g
Volume made up =v = m l
Volume taken for titration $=$ v \sim $=$ m l
Volume of silver nitrate solution required for sample = V2 =
Volume of silver nitrate required for blank titration = $V = \dots m l$

Normality of the AgNO3, solution =N $1000 \ ml \ 1 \ N \ AgNO_3, \ solution = 1 \ g \ mole \ of \ sodium \ chloride = 58.45g.$ Therefore,

% NaCl in the sample = $\frac{58.45}{1000}$ (sample titre – blank titre) N x volume made up x 100 taliquot volume taken for titration x weight of sample

RESULT

% of NaCl present in sample is.....