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ABSTRACT

This paper proposes a novel double interpolation approach to approximate the heat conduction equation with a
source/sink term. The heat conduction equation is a fundamental partial differential equation governing the transfer of thermal
energy in various physical systems. In many practical scenarios, source or sink terms are present, representing external heat
generation or absorption. Traditional numerical methods may struggle to accurately capture the behavior of such systems. This
approach enhances the accuracy of the approximation by effectively capturing the spatial and temporal variations of the
temperature distribution. We demonstrate the effectiveness of our approach through numerical experiments and comparisons with
exact solution. The results show that the double interpolation method offers significant improvements in accuracy and
computational efficiency particularly when dealing with complex heat conduction problems involving source or sink terms. Overall,
this study contributes to advancing the numerical approximation techniques for heat conduction equations with practical
implications in various fields, including thermal engineering, materials science, and environmental modeling.

Keywords: Heat conduction equation, Source/sink term, Double interpolation, Approximation, Accuracy.
1. INTRODUCTION

The heat conduction equation is a fundamental partial differential equation governing the transfer of thermal energy in
various physical systems. It plays a crucial role in numerous fields such as engineering, physics, materials science, and
environmental studies. Often, real-world scenarios involve additional complexities, such as the presence of source or sink terms
representing external heat generation or absorption. Traditional numerical methods for solving the heat conduction equation may
encounter challenges in accurately capturing the behavior of systems with source/sink terms.

In recent years, various numerical techniques have been developed to address these challenges. One promising
approach is the use of interpolation methods, which offer a flexible and efficient way to approximate the spatial and temporal
variations of the temperature field. In this paper, we propose a novel double interpolation approach to approximate the heat
conduction equation with source/sink terms.
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The issue of finding a parameter in an ill-posed heat equation was studied by Wang and Zheng (1999). By using
Tikhonov regularization on over-specified data, they were able to derive a stable approximation to the unknown parameter, and
they also provided numerical calculations to back up our approximation.

Concerning hyperbolic heat conduction, Ciegis (2009) found a solution. Their work included the development and
investigation of both explicit and implicit Euler systems. Parabolic and hyperbolic heat conduction problems can be efficiently solved
using the implicit Euler approach, as they also demonstrated.

A new numerical method for solving the linear transient heat conduction equation, known as the "Explicit Green's
Approach” (ExGA), was introduced by Mansur et al. (2009). As a representation of the issue domain in terms of physical qualities
and geometrical characteristics, the approach makes use of Green's matrix.

A numerical solution to the averaged thermal energy equation, which is based on Fourier conduction, was recently
published in the literature by White (2016). The solution is suitable for three-dimensional time-dependent and steady-state analysis
since it is based on non-iterative finite difference techniques that are second-order time-accurate.

For the purpose of deriving analytical and numerical solutions of heat diffusion in one-dimensional thin rods, Makhtoumi
(2017) examined adaptive approaches. They demonstrated a thorough comparison study using the finite difference approach and
the homotopy perturbation method.

The analytical and numerical solutions to the heat transport problem in a finite-length rod were reported by Skrzypczak
and Skrzypczak (2017). The analytical solution was derived by applying the Fourier series.

The one-dimensional steady-state heat conduction issues were addressed by Reddy K T (2019) using the finite difference
approach. The findings were compared with the exact solutions obtained by utilising the Resistance formula.

Lekomtsev (2020) examined a set of quasilinear parabolic equations in one dimension that include delay effects. They
developed a strategy for solving these types of problems numerically.

Using the functional variation approach, Liu et al. (2022) proved that the best performance may be ensured by
demonstrating the sufficient and necessary conditions for the global optimum in the heat conduction problem.

An analytical method for obtaining the temperature field in heat sinks was suggested by Correa et al. (2023). In this
method, the interface contact heat fluxes on each fin are calculated by solving a 2D model for the base and a 3D model for the fins
using the Classical Integral Transform Technique (CITT). The two models are then connected using Eigen function expansions.

2. HEAT CONDUCTION EQUATION WITH HEAT SOURCE/SINK TERM:

Let's take the following heat conduction equation:

X e ZE 4 R D) (1)
boundary conditions: «(0,t) = u(1,t) =0 (2)
with the initial condition: u(x, 0) = 2 sin mx + 3sin2mx (3)

and with a source/sink function R (x, t) = 2usinmt (4)
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A source term in a partial differential equation represents the contribution of external factors or phenomena that affect the
evolution of the dependent variable u. In this case, the term 2usinmt represents a spatially varying external influence on the

system described by w. It contributes to the rate of change of u with respect to time (Z—Lt‘) and can affect the distribution of u over
space and time. In the context of heat conduction, it represents a spatially varying heat source or sink within the medium.

3. EXACT SOLUTION OF PROPOSED HEAT CONDUCTION EQUATION:

Letu = XT where X = X(x),T = T(¢t) (5)

XT' = aX"T + 2XT sin(nut) (6)
Dividing equation (5) by XT on both sides, we get

xT' X"'"T  2XTsinmt

— =

XT XT XT

il x" .
—=a—+ 2sinnt
T X

aXT” =T?’— 2sinmt = —k?

Case-l: ax7” =—k?=X"+ I;—ZX =0=X =ccos (\/%)x + ¢,sin (\/%)x 7
Case-ll: = — 2sinmt = —k2 % = (2sinmt — k)T = L = 2sinnt — k?)de

= logT = 2mcosmt — k?t + logc; = T = cexp(2m cos it — k?t) (8)
u(x,t) =XT = [C1COS (%) X + cysin (%) x] czexp(2m cos wt — k?t) 9)

Applying first condition of equation (2) in equation (9), we get
u(0,t) = ¢;cz exp(mcosmt —k*t) =0=¢, =0
Putting the value of ¢, in equation (9), we get
u(x,t) = cyczexp(2m cos wt — kt)sin (\/%) x (10)
Applying second condition of equation (2) in equation (10), we get
k

u(x, t) = cyc3 exp(2m cos mt — k2t) sin (%) =0=sin (%) =0= N

. k . .
Putting the value of 7= equation (10), we get

u(x, t) = c,c3exp(2m cos it — k?t)sinnmx (1)
The most general solution is

u(x, t) = Y2, b, exp(2m cos mt — k?t)sinnmx (12)
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Applying condition of equation (3) in equation (12), we get

—2m

u(x,0) = X%, b, sinnmx = 2e~ 2" sinmx + 3e " sin2nx

2T sin2mx

bysinmx + bysin2mx + -+ = 2e " sinmx + 3e
bl = 26_2”, b2 = 36_27-[, b3 = 0, .
Putting the values of by, b,, bs... in equation (12), we get

~2% exp(2m cos it — 4w at) sin2nx (13)

u(x, t) = 2e 2" exp(2m cos it — m2at) sinmwx + 3e
Approximate solution of proposed heat conduction by double interpolation method:

Using the double interpolation method, we may now solve equation (1) in addition to conditions (2) and (3), and we obtain
The difference interval of x as 0.2, denoted as h = 0.2

Calculating the duration of t as a function of Bender-Schmidt

= 0D _ 502 (14)

T 2¢c2 2

Thusxy = 0,x; = 0.2,x, = 0.4,x3 =0.6,x, = 08,x5 =1
to=0,t; = 0.02,t, = 0.04,t; = 0.06,t, = 0.08,t5 = 0.1
Once we've drawn straight lines parallel to the coordinate axis (¢, x), we'll have a total of 25 mesh points.

ou 2%u .
5% + 2usinmt

ou _ Uij+1~Uij

at k

0%u _ Ujq1j=2U U

d0x2 h?

Ujjy1—Uij aui—l,j_zui,j+ui+1,j
k h2

+ 2u; jsinmt;
ka ,
ul-lj+1 - ui'j = h—z(ui_llj — Zui‘j + ul-+1_j) + Zkui_jsmntj

2ka . ka
Upjog = (1 - + 2ksm7rtj) u; + el (ui—l,j + ui+1,j)

ui‘j+1 = (1 — 2a + 2ksin7rt]~)ui_j + la(ui_l_j + ui+1_]~) (15)
where
k 0.02
A hZ "~ (0.2)2
a=1
ui‘j+1 = [1 — 21+ stinﬂtj]ui‘j + A(ui_l_j + ui+1_]-) (16)
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i=1j=0

uy; = [1—2(0.5) + 2(0.02)sinmwty]u,g + 0.5(ugy + uyg)

uy; = 0.5(0 + 3.6655) = 1.8328

i=2j=0

Uy = [1 —2(0.5) + 2(0.02)sinmty]uyo + (0.5)(uqg + uszg)
U,y = (0.5)(4.0287 + 0.1388) = 2.0837

i=3j=0

uz; = [1 — 2(0.5) + 2(0.02)sinmty]usg + (0.5)(uyg + Uyg)
usy = (0.5)(3.6655 — 1.6776) = 0.9940

i=4,j=0

Uy = [1—2(0.5) + 2(0.02)sinmtyus + (0.5)(uzg + usg)
Uy = (0.5)(0.1388 + 0) = 0.0694

U1 = [1— 24 + 2ksinmt;|ugj + Ay + Uipe))
i=1j=1

Uy, = [1 —2(0.5) + 2ksinmt, Ju;; + 0.5(ug; + uyq)

Uy, = [2(0.02)sin(0.027) Juyq + 0.5(ugq + uypq)

Uy, = [0.04sin(0.027)]1.8328 + 0.5(0 + 2.0837) = 1.0465
i=2j=1

Uy, = [1 = 2(0.5) + 2(0.02)sin(0.027)]u,; + 0.5(ugq + usq)
Uy, = [2(0.02)sin(0.027)]2.0837 + 0.5(1.8328 + 0.994) = 1.4186
i=3j=1

Uz, = [1 —2(0.5) + 2(0.02)sin(0.027)]uz; + 0.5(uyq + Uyq)
Uz, = [0.04sin(0.027)]0.994 + 0.5(2.0837 + 0.0694) = 1.0790
i=4j=1

Uy = [1 —2(0.5) + 2(0.02)sin(0.027)]uy; + 0.5(us; + usq)
Uy = [0.04sin(0.027)]0.0694 + 0.5(0.994 + 0)

i=1,j=2
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U3 = [1 —2(0.5) + 2ksinmt,|ug, + A(ugy + uysy)

U5 = [2(0.02) sin(0.047)]1.0465 + 0.5(0 + 1.4186) = 0.7145
i=2j=2

Uys = [1 — 2(0.5) + 2ksinmt,]u,, + A(uy, + usy)

Uys = [2(0.02)sin(0.04)]1.4186 + 0.5(1.0465 + 1.079)

i=3j=2

Uz = [1 — 2(0.5) + 2ksinmt,]ug, + 0.5(uy, + Uyy)

Uss = [2(0.02)sin(0.04)]1.079 + (0.5)(1.4186 + 0.4972)

i=4,j=2

Uyz = [1 — 2(0.5) + 2ksinmt,]uy, + 0.5(uz, + usy)

Uy = [2(0.04)5in(0.047)]0.4972 + 0.5(1.079 + 0) = 0.5445

i=1j=3

Uy, = [1 —2(0.5) + 2(0.02)sin(0.067)]u;5 + A(ugs + Uss)

W, = [1—2(0.5) + 2(0.02)sin(0.067)]0.7145 + 0.5(0 + 1.0699) = 0.5403
i=2j=3

Uy, = [1—2(0.5) + 2(0.02)sin(0.067)|uy3 + A(uy5 + Ussz)

Uy = [1 = 2(0.5) + 2(0.02)sin(0.067)]1.0699 + 0.5(0.7145 + 0.9633)
i=3j=3

Uz, = [1 = 2(0.5) + 2(0.02)sin(0.06m)Jus5 + A(uyz + Usz)

Usy = [1 = 2(0.5) + 2(0.02)sin(0.067)]0.9633 + 0.5(1.0699 + 0.5445) = 0.8144
i=4,j=3

Uyq = [1 = 2(0.5) + 2(0.02)sin(0.06m) Juyz + (g3 + Uss)

Use = [1 = 2(0.5) + 2(0.02)sin(0.067)]0.5445 + 0.5(0.9633 + 0) = 0.4857
Upjyr = [1 — 21+ 2ksinntj]ul-‘j + A(ui_lyj + ui+1_]~)

i=1j=4

uys = [1 —2(0.5) + 2(0.02)sin(0.087) w4 + A(ugs + Uss)

Uys = [1 = 2(0.5) + 2(0.02)sin(0.087)]0.5403 + 0.5(0 + 0.8469) = 0.4288
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i=2j=4

Uys = [1 —2(0.5) + 2(0.02)sin(0.087)Juy, + A(uqy + Usy)

Uys = [1 — 2(0.5) + 2(0.02)sin(0.087)]0.8469 + 0.5(0.5403 + 0.8144) = 0.6858
i=3j=4

uzs = [1 — 2(0.5) + 2(0.02)sin(0.087) Jus, + A(uzs + Usy)

Uss = [1 —2(0.5) + 2(0.02)sin(0.087)]0.8144 + 0.5(0.8469 + 0.4857) = 0.6744
i=4j=4

Uys = [1 —2(0.5) + 2(0.02)sin(0.087) Juys + A(uzy + Usy)

Uys = [1 — 2(0.5) + 2(0.02)sin(0.087)]0.4857 + 1(0.8144 + 0) = 0.412

Table 1
Xo X1 X2 X3 Xa X5
0 0.2 0.4 0.6 0.8
to 0 0 4.0287 3.6655 0.1388 -1.6776 0
t 0.02 0 1.8328 2.0837 0.994 0.0694 0
tz 0.04 0 1.0465 1.4186 1.079 0.4972 0
t3 0.06 0 0.7145 1.0699 0.9633 0.5445 0
Ly 0.08 0 0.5403 0.8469 0.8144 0.4857 0
ts 0.1 0 0.4288 0.6858 0.6744 0.412 0
Table 2
Uy ﬂ0+1ll1i ﬂ{H‘Z Uqg ﬂl0+3 Uqi ﬂ0+4ll1i ﬂ{H-S Uqg
4.0287 -2.1959 1.4096 -0.9553 0.6588 -0.4574
1.8328 -0.7863 0.4543 -0.2965 0.2014
1.0465 -0.332 0.1578 -0.0951
0.7145 -0.1742 0.0627
0.5403 -0.1115
0.4288
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Table 3
oy AOF 1y, A0F 24, A%F3q,, A%t 4, A0F5qy,
3.6655 -1.5818 0.9167 -0.6003 0.4096 -0.2827
2.0837 -0.6651 0.3164 -0.1907 0.1269
1.4186 -0.3487 0.1257 -0.0638
1.0699 -0.223 0.0619
0.8469 -0.1611
0.6858
Table 4
Usg;j A.O-H'H,g{' Q{H—z Uzgj &0+3H-31' A0+4I|’.31‘ &0+5 Uz;j
0.1388 0.8552 -0.7702 0.5695 -0.402 0.2766
0.994 0.085 -0.2007 0.1675 -0.1254
1.079 -0.1157 -0.0332 0.0421
0.9633 -0.1489 0.0089
0.8144 -0.14
0.6744
Table 5
U yj &{H-luq,[' &{H-Z Ui &0+3 Uygj &0+4H4I‘ &{H-S Uy
-1.6776 1.747 -1.3192 0.9387 -0.6643 0.4811
0.0694 0.4278 -0.3805 0.2744 -0.1832
0.4972 0.0473 -0.1061 0.0912
0.5445 -0.0588 -0.0149
0.4857 -0.0737
0.412
Table 6
Uso AT 0, A7 0 A3 0, A0, A0,
0 4.0287 -4.3919 1.2284 3.6454 -6.7355
4.0287 -0.3632 -3.1635 4 8738 -3.0901
3.6655 -3.5267 1.7103 1.7837
0.1388 -1.8164 3.494
-1.6776 1.6776
0
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Table 7
Uy A0y, AZF0y;, A3 0, A0y, A0y,
0 1.8328 -1.5819 0.2413 1.2644 -2.08
1.8328 0.2509 -1.3406 1.5057 -0.8156
2.0837 -1.0897 0.1651 0.6901
0.994 -0.9246 0.8552
0.0694 -0.0694
0
Table 8
Uy A0y, A0y, A3FO0y, A0y, ARy,
0 1.0465 -0.6744 -0.0373 0.5068 -0.6495
1.0465 0.3721 -0.7117 0.4695 -0.1427
1.4186 -0.3396 -0.2422 0.3268
1.079 -0.5818 0.0846
0.4972 -0.4972
0
Table 9
13 A0y, A0y, A3F0q,4 A0y, AP0y,
0 0.7145 -0.3591 -0.1029 0.2527 -0.216
0.7145 0.3554 -0.462 0.1498 0.0367
1.0699 -0.1066 -0.3122 0.1865
0.9633 -0.4188 -0.1257
0.5445 -0.5445
0
Table 10
Uy A0y, A0y, A3*0qy,, A0y, AS*Oy,,
0 0.5403 -0.2337 -0.1054 0.1483 -0.052
0.5403 0.3066 -0.3391 0.0429 0.0963
0.8469 -0.0325 -0.2962 0.1392
0.8144 -0.3287 -0.157
0.4857 -0.4857
0
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Table 11
s A0y, AZF 0, A3F0qy,. A0y, AP0y,
0 0.4288 -0.1718 -0.0966 0.114 -0.03
0.4288 0.257 -0.2684 0.0174 0.084
0.6858 -0.0114 -0.251 0.1014
0.6744 -0.2624 -0.1496
0.412 -0.412
0

Since both the First and the Last Column of Table 1 contain 0, this means that

A0+1u00 — A0+2u00 — A0+3u00 — A°+4u00 — A°+5u00 =0

And A%y, = A0*2y ) = A0Sy = A%y, = A%*Sy, =0

From Table 2, we get

A%*1ly,, = —2.1959,A%*2y, ) = 1.4096, A% 3u,, = —0.9553, A%**u,, = 0.6588, A°*>u,, = —0.4574
From Table 3

A%y, = —1.5818, A% 2y, = 0.9167,A%3u,, = —0.6003, A°**u,, = 0.4096, A%*5u,, = —0.2827
From Table 4

A%y, = 0.8552, A%+ 2y, = —0.7702, A% 3uz, = 0.5695, A% *uy, = —0.402, A%*Suy, = 0.2766
From Table 5

A%y, = 1.747, A% ?u,, = —1.3192,A%*3u,, = 0.9387, A% *u,, = —0.6643, A°">u,, = 0.4811
From Table 6

A0y = 4.0287, A% 0y, = —4.3919, A3 0y, = 1.2284, A**0u,, = 3.6454, A5Ou,, = —6.7355
From Table 7

A0y, = 1.8328,A% 0y, = —1.5819,A3 0y, = 0.2413,A* 0u,;, = 1.2644, A5*0u,, = —2.08
From Table 8

A Ouy, = 1.0465, A% %uy, = —0.6744, A3+Ouy, = —0.0373, A* %u,, = 0.5068, A5+%u,, = —0.6495
From Table 9

A0y, = 0.7145, A0y, = —0.3591, A3*0uy, = —0.1029, A**Ouy, = 0.2527, A5+0uy, = —0.216
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From Table 10

A1+0u04 = 0.54‘03, A2+0u04

—0.2337,A3*%,, = —0.1054, A**%u,, = 0.1483,A5*%u,, = —0.052
From Table 11

A0y = 0.4288, A2*0uys = —0.1718, A3 0uys = —0.0966, A*0uys = 0.114, AS0uys = —0.03
The formula for determining the differences between two orders can be expressed generally as

m+n — AM40 m+0 n(m=1) ym+o0 maAm+0
AT Mg = A" Uy — nAT U + TA Uop—z — =+ + (=1)MA™ Pugg

A Mg, = A%y — mAYT Mo + %A‘””um_zo — et (m1D)MA Py
Ay, = A0y, — A0y, = 1.8328 — 4.0287 = —2.1959

Al+2yg) = A0y, — 20140y, + A*0yg, = 1.0465 — 2 x 1.8328 + 4.0287 = 1.4096
A2y = A%H0uy, — A0y, = —1.5819 — (—4.3919) = 2.8100

A3*lyy = A3H0uy, — A3HOuy, = 0.2413 — 1.2284 = —0.9871

A1+3u00 = A1+0u03 - 3A1+0u02 + 3A1+0u01 - A1+0u00 = 07145 —3x 10465 + 3 x1.8328 —4.0287 =
—0.9553

A+, = A2HO0y ) — 2A2H0y ) 4 A2HO0y ) = —0.6744 — 2 X —1.5819 — 43919 = —1.9025

A1+4u00 = A1+0u04_ - 4’A1+0u03 + 6A1+0u02 - 4A1+0u01 + A1+0u00 = 0.5403 - 4’ X 0.7145 + 6 X 1.04’65 - 4’ X
1.8328 + 4.0287 = 0.6588

Ay, = A0y, — A0y, = 1.2644 — 3.6454 = —2.3810
A3+2q00 = A3+0y, — 2030y, + A3HO0yg) = —0.0373 — 2 x 0.2413 + 1.2284 = 0.7085

A2+3u00 = A2+0u03 - 3A2+0u02 + 3A2+0u01 - A2+0u00 = _03591 —3X (—06744) + 3 X —15819 -
(-4.3919) = 1.3103

Interpolating polynomials in two variables up to the difference of the fifth degree requires the following formula:
u(x,t) =

-X0) t—t
Uy + [—(x hxo A0y, + (t) p 0) A°+1u00]

1 [(x—x0)(x—x1) 2(x—x0)(t—tg) (t—to)(t—t1)
+; [—th 1 A2+0u00 + —;]lk 0 A1+1u00 + —okz 1 A°+2u00]

+%[(x—x0)(x—x1)(x—x2) A3+0u00 + 3(x—x0)(x—x1)(t—to) A2+1u00 + 3(x—x0)(t—to)(t—t1) A1+2u00 + (t=to)(t-t)(t—t2) A0+3u00]

h3 h2k hk? k3
+i[(x—xo)(;’C—xiEX—xz)(X—xﬂ A4+ouOO + 4(X—X0)(X—J;ll?’);X—xz)(t—to) A3+1u00 + 6(X—xo)(X—:21;gt—to)(t—t1) A2+2u00 +
4(x—x0) (t—to)(E—t1)(t—t2) (t=to)(t=t1)(t—t2)(E=t3)
0 h0k3 1 2 At+3y, 4 (ho 1k4 2 3 A°+4u00]
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+ (x=x0)(x—x1) (x—x2) (x—x3) (Xx—x4) A5+0 5(X X0) (x—x1)(x—x2)(x—x3)(t— to)A4+1 Ugo +
5! hS h*k
10(x—x¢)(x— x1)(§X2X2)(f to)(t—-t1) A3+2u +10(X Xo) (x— x1)§f 350)(5 t1)(t- fz)A2+3 Ugo +
h°k h4k
5(X—xo)(f—fo)(hfk4f1)(f t2)(t—t3) A1+4u00 (t to)(t- t1)(tk§2)(t t3)(t—ta) A0+5y, 00] (17)

u(x,t) =
(x-0) (t-0)
[ 0.2 (4.0287) + 0.02 (0)]

(x=0)(x—0.2) 2(x=0)(t-0) (t=0)(t—0.02)
[ Do (43919) + LR (-2.1959) + R S (0)]

+1‘[W (1.2284) + W(Z.SIOO ) + W(1.4096 )+

0.2)3 (0.2)2(0.02) (0.2)(0.02)2
(t—0)(t—0.02)(t—0.04)
(0.02)3 (0)]
1 [(x=0)(x—0.2)(x—0.4)(x—0.4) 4(x=0)(x—0.2)(x—04)(t-0) , 6(x—0)(x—0.2)(t-0)(t-0.02) .
+ [ 027 (3.6454) + ©2)3(002) (—-0.9871) + 02)2(002)2 (—1.9025) +
4(x=0)(¢=0)(t-0.02)(¢—0.04) . (t—0)(t—0.02)(t—0.04)(t—0.06)
(0.2)(0.02)3 (—0.9553) + (0.02)% (0)]
1 (x—0)(x—0.2)(x—0.4)(x—0.6)(x—0.8) _ 5(x-0)(x—0.2)(x-0.4)(x—0.6)(t—-0) -
+2] o (—6.7355) + T (—2.3810) +
10(x—0)(x—0.2)((x—0.4)(t—0)(t—0.02) 10(x—0)(x—0.2)(t—0)(t—0.02)(t—0.04)
02)3(002)2 (0.7085) + 0220023 (1.3103) +
5(x—0)(t—0)(t—0.02)(t—0.04)(t—0.06) (t—0)(t—0.02)(t—0.04)(t—0.06)(t—0.08)
i (0.6588) + o )] (18)

u(x,t) = 20.1435x — 54.8987x(x — 0.2) — 0.2196xt + 25.5917x(x — 0.2)(x — 0.4) + 0.0011xt(x — 0.2) +
0.000056384xt(t — 0.02) + 94.9323x(x — 0.2)(x — 0.4)(x — 0.6) — 0.000026323xt (x — 0.2)(x — 0.4) —
0.00000761xt(x — 0.2)(t — 0.02) — 0.00000025475x¢(t — 0.02)(t — 0.04) — 0.000017961x (x — 0.2) (x —
0.4)(x — 0.6)(x — 0.8) — 0.0000031747xt(x — 0.2)(x — 0.4)(x — 0.6) + 0.00000018893xt(x — 0.2)((x —
0.4)(t — 0.02) + 0.000000034941xt(x — 0.2)(t — 0.02)(t — 0.04) + 0.0000000008784xt(t — 0.02)(t —
0.04)(t — 0.06) (19)

4. RESULTS AND DISCUSSION

Graph 130 exact solution of proposed heat conduction equation
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Graph 2:3D approximate solution of proposed heat conduction equation by DIM

llEraph 3:2D approximate solution of proposed heat conduction equation by DIM for different values of temporal coordinate
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Table 12: Estimation of the error between the exact and DIM solution of the proposed heat conduction equation
x t =0.01 t =0.02 t =0.03 t =0.04

Exact DiMm Error Exact DiM Error Exact DIM Error Exact DIM Error
0.1 | 1.9678 1.9307 | 0.0371 | 1.6267 1.5961 | 0.0306 | 1.3458 1.3206 | 0.0252 | 1.1147 1.094 | 0.0207
0.3 | 3.7647 | 3.7008 | 0.0639 | 3.1743 | 3.1209 | 0.0534 | 2.6808 | 2.6361 | 0.0447 | 2.2678 | 2.2304 | 0.0374
05| 1.8792 1.8669 | 0.0123 | 1.7547 1.7422 | 0.0125 | 1.6284 | 1.6157 | 0.0127 | 1.5019 1.4893 | 0.0126
0.7 | -0.7242 | -0.6802 | 0.044 | -0.3351 | -0.302 | 0.0331 | -0.0459 | -0.0217 | 0.0242 | 0.1623 | 0.1792 0.017
0.9 | -0.8065 | -0.7769 | 0.0296 | -0.5422 | -0.5194 | 0.0228 | -0.3394 | -0.322 | 0.0174 | -0.1865 | -0.1736 | 0.0129
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5. CONCLUDING REMARKS

In conclusion, this paper has introduced a novel double interpolation approach for approximating the heat conduction
equation with source/sink terms. We have demonstrated the effectiveness of our method in accurately capturing the spatial and
temporal variations of the temperature field, thereby addressing the challenges posed by complex heat conduction problems. By
leveraging interpolation techniques both spatially and temporally, our approach offers several advantages over traditional numerical
methods. The double interpolation method provides a more refined estimation of the temperature distribution, leading to improved
accuracy in modeling heat transfer processes with source or sink terms. Moreover, our approach is computationally efficient,
making it suitable for practical applications in various fields such as thermal engineering, materials science, and environmental
modeling. Through numerical experiments and comparisons with existing methods, we have shown that the double interpolation
approach outperforms alternative techniques in terms of accuracy and computational efficiency. Our method offers a promising
avenue for further research and development in the field of numerical heat transfer analysis.

In future work, it would be valuable to explore extensions and refinements of the double interpolation approach, as well as
its application to more complex heat conduction problems. Additionally, investigations into the optimization and implementation of
the method on parallel computing architectures could further enhance its scalability and applicability to large-scale simulations.
Overall, the double interpolation approach presented in this paper represents a significant advancement in the numerical
approximation of heat conduction equations with source/sink terms, with implications for improving our understanding and modeling
of thermal processes in diverse real-world systems.
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