EXPERIMENT: 09

AIM:

TO PERFORM ASSAY OF SODIUM BENZOATE (NON-AQUEOUS ACID BASE TITRATION) AND STANDARDIZATION OF TITRANT

¹Dr. KAPIL KUMAR

¹Associate Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

²Mr. MANOJ KUMAR SHARMA

²Assistant Professor, School of Pharmaceutical Sciences, Apeejay Stya University, Gurgaon, Haryana

Ch.Id:-ASU/NSP/EB/ APHFTA /2022/Ch-09

ISBN-978-93-91842-51-2

DOI: https://doi.org/10.52458/9789391842512.nsp2022.eb.asu.ch-09

REQUIREMENTS

A. Glassware & Instruments

- 1. Conical flask
- 2. Burette
- 3. Pipette

B. Chemicals & Reagents

- 1. Sodium benzoate
- 2. HCl
- 3. Acetic acid
- 4. Potassium acid phthalate

THEORY

Sodium benzoate ($C_7H_5NaO_2$, M. Wt. = 144.1) is a white, crystalline or granular powder or flakes. It is mildly hygroscopic, easily soluble in water, and alcohol-soluble to a limited degree. When dried, the powder contains at least 99 percent sodium benzoate.

The antibacterial and antifungal activities of sodium benzoate. Concentrations of up to 0.5 percent are utilised as a preservative in medicinal formulations, especially oral preparations. Sodium benzoate is a common component of cough medicines.

Sodium benzoate is an organic sodium salt formed by the substitution of a sodium ion for the proton in the carboxy group of benzoic acid. It functions as an antimicrobial food preservative, an allergy to drugs, an algal metabolite, a human xenobiotic metabolite, and a plant metabolite. It includes a benzoate.

It is a salt produced from a weak acid and a strong base, hence its solution is alkaline; these salts are measured using a solution of N/2 hydrochloric acid in acid-base titrations.

PRINCIPLE

The aqueous solution of sodium benzoate, which is a salt produced from a weak acid and a strong base, is alkaline. In an acid-base titration, thus, solutions containing sodium benzoate are evaluated using a standard N/2 hydrochloric acid solution.

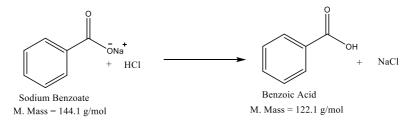
PROCEDURE

- Rinse the burette with distilled water and titrant (HCl).
- Fill the burette level with N/2 HCl (adjust it).
- Pour 10 ml of unknown sodium benzoate solution (about 3 g) into a clean conical flask.
- Combine 25 mL of dry ice with 15 mL of ether.
- Include six drops of bromphenol blue.
- Begin titration by adding HCl drop by drop while shaking the aqueous and ethereal layers until the aqueous layer retains a light green colour (end point).
- Separate the lower layer, wash the ethereal layer with 10 ml of water, and add the washings and an additional 10 ml of solvent ether to the separated aqueous layer.

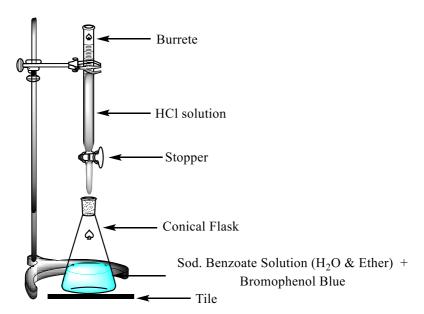
- Complete the titration with N/2 hydrochloric acid while continuously shaking.
- Record the amount of HCl used.
- Each ml of N/2 hydrochloric acid equals 0.07205 grammes of C₇H₅NaO₂.
- Weigh precisely 0.25 grammes of sodium benzoate, dissolve it in 20 ml of anhydrous glacial acetic acid, heating to 50 degrees Celsius if necessary, and cool. As an indicator, titrate with 0.1 M perchloric acid using 0.05 ml of 1naphtholbenzein solution. Perform an empty titration.

For the Estimation of Sodium Benzoate

Preparation of 0.1N solution of HClO₄ and its standardization


- Dissolve 8.5 ml of 72% HClO₄ in approximately 900 ml glacial acetic acid while stirring continuously.
- Add approximately 30 ml of acetic anhydride and fill the remaining volume (1000 ml) with glacial acetic acid. Store the mixture for 24 hours.
- \bullet The acetic anhydride has absorbed all of the water from HClO₄ and glacial acetic acid, rendering the solution nearly anhydrous.
- Before adding acetic anhydride, HClO₄ must be diluted with glacial acetic acid since the reaction between HClO₄ and acetic anhydride is explosive.

Standardization of HClO₄


 To 500 mg of potassium acid phthalate, add 25 ml of glacial acetic acid and a few drops of crystal violet dissolved in glacial acetic acid at a concentration of 5 percent by weight as an indicator.

- The titration of this solution with 0.1 HClO₄.
- The colour varies between blue and blue-green.

REACTION

DIAGRAM

APPLICATIONS

- 1. Sodium benzoate, with the E number E211, is a preservative. It is most commonly found in acidic foods like salad dressings (acetic acid in vinegar), carbonated beverages (carbonic acid), jams and fruit juices (citric acid), pickles (acetic acid), condiments, and yoghurt toppings, etc.
- 2. Sodium benzoate is a flavouring agent and antibacterial preservative.
- 3. The synthesis of sodium benzoate involves the combination of benzoic acid with sodium hydroxide.
- 4. Due to its capacity to bind amino acids, sodium benzoate is utilised as a therapy for urea cycle diseases.
- 5. Together with phenylbutyrate, sodium benzoate is used to treat hyperammonemia.

RESULT

The percentag	e purity	of th	e given	sample	of	sodium	benzoate	is